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Principal Investigators: 
Carlos Mendoza, Jamey Turner, Daniel O’Connell 

 
ABSTRACT 

 
This study has two components: 1) a seismological site response investigation using existing ground motion data 
recorded for the 6 November 2011 Mw 5.6 Prague, Oklahoma earthquake at seismic monitoring stations located 
within a 2° radius surrounding the Oklahoma City region, and 2) field surveys that acquired new active source shallow 
3-component seismic (shear-wave) measurements at the seismic monitoring station locations to measure site effects, 
horizontal to vertical spectral ratios (HVSR), Vs30, Vs-depth structure and develop NEHRP Site Classification and 
calculate empirical ground motion amplification functions. The site response investigation used spectral inversion 
methodology to simultaneously identify source, site, and path effects from the inversion of observed ground motions 
(Hartzell and Mendoza, 2011). The procedure allows a systematic identification of resonance peaks in the site 
response that can be attributed to weakly consolidated sediments at depth. These resonant frequencies have 
generally been found to be comparable to spectral ratios of horizontal to vertical motions of micro-tremor. The site 
response functions have also shown higher frequency resonance peaks likely caused by a combination of higher 
order harmonics and shallower structure. Although more robust determinations of site amplification might be obtained 
using multiple sources at different distances and azimuths, amplification factors derived using data from the single 
2011 Prague, Oklahoma earthquake are of great value both in identifying points of anomalous site amplification and 
also reconciling independent observations of site response.  
 
The field-based Vs survey used 15 Sigma4 three-component seismographs with varying array geometries and active 
sourcing to obtain new site Vs structure profiles and HVSR at eleven seismic monitoring stations across Oklahoma 
that recorded ground motions from the 6 November 2011 Mw 5.6 Prague, Oklahoma earthquake. In addition, the 
three component seismic data were processed and analyzed to develop NEHRP Soil Site Classifications, and 
calculate site-specific ground motion amplification functions. Local soil classes and/or velocity profiles are generally 
not available for CEUS stations, and obtaining site measurements helps calibrate, or otherwise verify amplification 
factors identified using the Hartzell and Mendoza (2011) waveform-analysis approach. The surface-wave dispersion 
data provide site-specific 1D shear-wave velocity measurements that are compared directly with the inversion results 
to evaluate the performance of the estimated site amplification.  
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1. INTRODUCTION 

This study analyzes site effects associated with the Mw 5.6, 6 November 2011 Prague, Oklahoma 
earthquake, and provides new data from a targeted field-based investigation using active-source and three-
component low frequency seismograph sensors to obtain surface geophysical data at strong motion sites 
across Oklahoma.   

1.1 Background 

In 2016-2017, the USGS initiated a similar effort to measure approximately 13 strong motion sites around 
the Fairview area and 15 sites in the vicinity of Cushing (Pers. Comm., Bill Stephenson, 2017). Some of 
these seismic monitoring stations are located in areas of high population densities in and around Oklahoma 
City, but most are spread across rural Oklahoma.  

The work funded by this grant (award G17AP000021) directly addresses the priority topics for research 
outlined for Central Eastern United States (CEUS) in the FY2017 USGS Earthquake Hazards Program 
(EHP) External Research Support program announcement. This investigation directly addresses the priority 
topics for research outlined for the Central and Eastern U.S. (CEUS) in the FY2016 USGS Earthquake 
Hazards Program (EHP) External Research Support program announcement. These priority topics 
specifically state “Another priority is an improved understanding of seismic wave propagation at local and 
regional distances using a combination of field observations, analysis of monitoring data and modeling 
approaches. Research activities that utilize monitoring data from the regional seismic and geodetic networks 
are strongly encouraged.” In particular, the investigation seeks to characterize wave propagation and 
attenuation in the CEUS and also to improve estimates of site response using instrumental recordings and 
site-specific geophysical field measurements to characterize shallow geologic properties and velocity 
structure at existing and temporary seismic stations, directly in line with the CEUS Element 1 (Regional 
earthquake hazards assessments) priority specifically stipulated in the FY2016 EHP program 
announcement that states ''Constrain ground motions at seismograph stations through site characterization 
studies of existing ANSS and Transportable Array (TA) stations). Use of seismic data from ANSS and 
EarthScope TA or flexible array stations is encouraged." This work was performed using a methodology 
developed in collaboration with Dr. Steve Hartzell of the USGS. 

Additionally, this work partially addresses a priority task identified in Element 2, Research on Earthquake 
Effects, by providing calculated amplification functions for the stations near Oklahoma City, which would 
provide new data for efforts to address the need to “develop sedimentary basin amplification terms and 
regional amplification factors for deep soil sites that could be included in future building codes.”  

1.2 Project Objectives 

Primary objectives of the field investigation were to determine the most efficient data acquisition and 
processing approaches to obtain robust estimates of seismometer site Vs-depth to at least 30 m depth, and 
to directly constrain site responses and site response variability by also collecting broadband three-
component data to estimate H/V over an area around seismometer sites. 



G17AP00021 

04.79170003 Page 2 of 143 

Primary objectives of the seismological site response investigation were to apply the Hartzell and Mendoza 
(2011) generalized inversion method to estimate site terms using earthquake ground motion data and 
compare site terms to site-survey estimates of Vs-depth and H/V to understand the most effective methods 
to acquire data to estimate ground motions for future earthquakes. 

Secondary project objectives were to test various distributed 2D seismometer array distributions to acquire 
data and to test if sledgehammer-based vertical seismic sourcing was sufficient to obtain broadband 
constraints on surface-wave dispersion active-source surface-wave dispersion processing combined with a 
deconvolution approach to seismic interferometry. 
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2. SITE VS-DEPTH AND H/V INVESTIGATION 

2.1 Data Acquisition  

The authors worked with the USGS and the Oklahoma Geologic Survey to develop a list of target sites and 
gain property access. Geophysical surveys were obtained at eleven sites (Figure 1.1). We attempted to re-
survey sites that Stephenson had surveyed in 2016-2017 to obtain overlapping data between the different 
field campaigns, but encountered access issues and were not successful.  

For this investigation, Vs data were acquired at seismic monitoring stations area using varying 3D 
geometries deploying 15 Sigma4 3-component (3C) 2 Hz seismograph sensors using a hammer and strike 
plate active source approach outside the dimensions of each 3D array. Ideally, the array was centered about 
the seismograph station in a nominal “Y” or “K” shaped array. In some cases, site accessibility logistics 
required other array geometries. The 15 3C Sigma4 units each contain a vertical and two horizontal sensors, 
ultimately providing 45 channels. The Interferometric Multichannel Analysis of Surface Waves (IMASW) 
approach of O’Connell and Turner (2011) was used to calculate multi-component Rayleigh wave dispersion 
curves (e.g., vertical-vertical, vertical-radial, radial-radial, and all combinations therein). Site-specific 
subsurface velocity data were obtained to provide constraints on site ground conditions for calibration of 
seismic instrumentation and recorded ground motions.  

The seismic data collected were used to develop multi-component Rayleigh wave dispersion, in some cases 
Love wave dispersion, dispersion Green’s Functions (DGFs), Sigma4 station pair pathway plots, best-fit Vs-
depth and Vs30 site models, Horizontal to Vertical (H/V) ratios for each station, and a site-averaged H/V 
ratio. IMASW data collected for this study reduces uncertainty related to site response estimates, provides 
additional inputs for Next Generation Attenuation models (i.e., NGA3), and support development of single-
station sigma models.  

2.1.1 Testing of 2D Array Shapes 

Permanent seismographic stations are typically located near property lines or amongst buildings, often 
limiting or preventing the ability to deploy seismometer arrays surrounding a permanent station with ideal 
shapes like a series of concentric circles or embedded triangles to employ processing techniques such as 
spatial autocorrelation or 2D slowness frequency analyses. The field project tested several 2D seismic array 
shapes that could be rapidly deployed using a measuring tape within single properties including Y-, K-, and 
truncated-star-shaped arrays.  

Distributed 2D seismic arrays are more robust than linear seismic arrays because the point-spread 
(smearing) function for multiple dimension deconvolution (MDD) are better conditioned (are not singular) 
when inverted to obtain MDD estimates of Green’s functions between pairs of seismometers from 
seismometer arrays (Wapenaar et al., 2011). Distributed arrays also provided lateral averages over an area 
instead of a line which is better suited for modeling earthquake ground motions since seismic energy from 
multiple earthquakes may arrive at a site from many different azimuths. The distributed arrays used variable 
station spacing to ensure adequate spatial sampling close to seismometer vault locations to avoid spatial 
aliasing at high frequency while having sufficiently-wide array aperture to constrain low-frequency long-
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wavelength dispersion. Distributed 2D array shapes ensure that estimated surface-wave dispersion is 
obtained from lateral spatial averages appropriate to estimate Vs-depth for earthquake ground motion 
modeling purposes. 

2.1.2 Supplementary Source Type Testing 

Ambient noise rarely contains sufficient high-frequency energy distributed over a range of azimuths to 
reliably estimate high-frequency dispersion. This field investigation began with conducting field testing to 
find an efficient zero-impact supplementary seismic sourcing approach to obtain high-frequency constraints 
on surface-wave dispersion and H/V. The complete surface-wave Green’s function expressions from Haney 
and Nakahara (2016) shown in equations (1-5) below provide a means to investigate how different 
orientations of seismic sources as moment tensor components will excite surface waves as a function of 
frequency and surface-wave mode number. The displacement expressions in equations (1-5) are implicitly 
a function of wavenumber and source-receiver distance.  

Let r be the distance between source and receiver, c be phase velocity (Love-wave for equations 1-2 and 
Rayleigh-wave for equations 3-5), U be group velocity (Love-wave for equations 1-2 and Rayleigh-wave for 
equations 3-5), kn=ω/c be wavenumber where ω is angular frequency, h be the depth of the source, and z 
be the depth of the receiver,  l1 be the Love-wave eigenfunction as a function of depth,  r1 be the Rayleigh-
wave horizontal eigenfunction as a function of depth, r2 be the Rayleigh-wave vertical eigenfunction as a 
function of depth, φ be the azimuth in radians clockwise from north for a coordinate system where for φ =0 
x is oriented north, y is oriented east, and z is oriented positive down.  The seismic moment tensor source 
components are the set [Mxx, Mxy, Mxz, Myx, Myz, Myy, Mzx, Mzy, Mzz]; including all nine moment tensors terms 
which independently allow for single couples like a transverse shear surface at the surface (Mxy). Hm(1) are 
Hankel functions of the first kind of integer order m. Love-wave displacement expressions as a summation 
over modes  numbers n are shown in equations (1-2): 
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For Rayleigh-waves the displacement expressions are: 
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For surface-wave dispersion processing, it is best to not combine Love-wave and Rayleigh-wave energy on 
horizontal components of ground motion measurement because they have different but similar fundamental-
mode phase-velocities. It is often necessary to estimate Rayleigh-wave phase velocities from radial-
components over frequency bands where H/V becomes large and Rayleigh-wave energy on vertical 
components becomes small. Consequently, the best strategy is to find a seismic source configuration that 
does not produce Love-waves on radial-component ground motions because Love-wave energy could bias 
estimates of Rayleigh-wave phase velocities. For simplicity of discussion let φ=0 so that the x component is 
the radial horizontal component and the y component is the transverse horizontal component. For a vertical 
source directed downward such as a hammer impact, only the Mzz component is nonzero to first order and 
only Rayleigh-wave displacements are nonzero on the vertical (z) and radial (x) components; the transverse 
component is zero because sin(φ)=0 in equation (5). 
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Compaction of soil can produce nonzero Mxz and Myz shear components in the zone between zero 
compaction and maximum compaction.  

Differential compaction during vertical seismic sources will produce vertical shearing of soil along the edges 
of a baseplate if the area of the baseplate is not sufficient. Examples of seismic sources that can produce 
significant excitation of Mxz and Myz include soil compaction devices like slide hammers and some Vibroseis 
vehicles that have large hold-down weights relative to baseplate areas. Vibroseis vehicles with vertical 
vibrator masses can reduce Mxz and Myz excitation by reducing drive levels in soft soil areas. Consequently, 
use of a baseplate of sufficient diameter to avoid significant concentrated soil compaction minimizes the Mxz 
and Myz source shear terms that produce nonzero Love-wave horizontal displacements as well as 
transverse-component Rayleigh-wave displacements. The project used a steel plate with a vertically 
directed sledgehammer to reduce ground deformation to avoid leaving any marks on property which also 
minimized the Mxz and Myz source shear terms to minimize excitation of Love-waves on the radial horizontal 
components so that unbiased estimates of Rayleigh-wave phase velocities could be obtained from radial-
component ground motions at high frequencies; Love-wave phase velocities tend to be about 10% faster 
than Rayleigh-wave phase velocities. 

For shear-wave refraction and Love-wave dispersion data acquisition excitation of the Mxy component will 
produce some Rayleigh-wave energy on the transverse horizontal component as shown in equation (4). 
Setting all the moment components to zero except the Mxy component and placing sources and receivers 
at the surface (z=h=0), the ratio of transverse Rayleigh-wave displacement to transverse Love-wave 
displacement for each mode is (equation 6): 

𝑢𝑢𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑢𝑢𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅
=
𝑟𝑟12(0) 𝑐𝑐𝑅𝑅  𝑈𝑈𝑅𝑅
𝑙𝑙12(0) 𝑐𝑐𝑅𝑅 𝑈𝑈𝑅𝑅

 

(6) 

Where cL and UL are Love-wave phase- and group-velocities respectively, cR and UR are Rayleigh-wave 
phase- and group-velocities respectively, r1(0) is the Rayleigh-wave horizontal displacement eigenfunction 
value at the free surface, and l1(0) is the Love-wave horizontal displacement eigenfunction value at the free 
surface. Thus, adding transverse horizontal shear source energy (Mxy shear component) to produce shear-
waves and Love-waves produces transverse ground motions that are a superposition of Rayleigh- and Love-
wave displacements. In contrast, using exclusively vertical excitation (Mzz) produces only Rayleigh-wave 
surface displacements since there is no Mzz term in the Love-wave displacements in equations (1-2).  
Consequently, the project exclusively used a vertically oriented sledgehammer striking a steel plate to 
maximize Mzz source-excitation and to minimize soil compaction to minimize Mxz and Myz source excitation. 

Anelastic attenuation limits observation of high-frequency fundamental-mode dispersion when there are 
low-Vs (Vs < 300 m/s) surficial deposits. Most of the fundamental mode energy is confined to depths of a 
third wavelength. So at high frequencies when Vs < 300 m/s and frequencies are > 30 Hz half-wavelengths 
will be < 3 m where Qs will generally be < 10 (Brocher, 2005). Consequently, at higher frequencies higher 
modes will dominate recorded ground motions because higher-mode eigenfunctions have significant 
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displacement below the shallow low Qs layer and allow higher-modes to “tunnel” beneath the shallow low 
Qs layer. Sigma4 51020 suffered some sort of sensor malfunction during the OK-005 deployment that 
produced spurious H/V responses, particularly at low frequencies. Sigma4 51020 appears to exhibit the 
sensor malfunctions that corrupted low-frequency H/V up to survey W35A (bad for surveys OK-005, V35A, 
WMOK, and X34A) and then seems fine for survey W36A and the two later surveys that used it (FNO and 
TUL1). 

2.2 Data Processing 

All processing methods require that all components have the same amplitude and phase responses. The 
Sigma4 seismographs have nominal 2 Hz sensors, but actual individual component sensor natural periods 
vary from 2.0 Hz to 2.25 Hz, damping varies up to nearly 9%, and generator constants vary up to nearly 
7%. Consequently, the calibration data for each component of the 15 Sigma4 seismographs (natural 
frequency, damping, and generator constant), were used to create a transfer function so that each 
component had the response of the average response of all the components (natural frequency of 2.125 
Hz, damping of 0.522, and generator constant of 27.40 V/in/s). Since the data are recorded in one-minute 
blocks each one-minute block from each component was corrected to the common instrument response as 
the initial processing step. 

Subsequent processing consists of these three steps, detailed in subsections 2.2.1, 2.2.2, and 2.2.3 

1. H/V analyses 
2. Generate tensor Green’s functions using deconvolution interferometry with all station pairs 
3. Jointly invert Rayleigh-wave dispersion and H/V for Vs-depth. 

2.2.1 H/V Processing 

Multi-taper Fourier spectra were calculated using five orthogonal 3π Slepian tapers applied to two 
overlapping 32.768-second-long records spanning each one-minute data block. Individual time-window H/V 
ratios were calculated for each horizontal component from the log-averages of the multi-taper orthogonal 
estimates of Fourier spectra of each component. Each station’s horizontal component H/V was calculated 
from an alpha-trimmed log-mean of all the time-windows with H/V estimates; the data in the upper and lower 
20% tails were excluded from the log-means. The station-average H/V was calculated as the log-mean of 
all horizontal components’ H/V at each frequency. 

2.2.2 Ambient-Noise Interferometry: Tensor Green’s Function Processing 

The most widely used application of ambient-noise interferometry is the retrieval of seismic surface waves 
between seismometers from continuous recordings of Earth noise. Wapenaar et al. (2011) provides a 
summary discussion and references (Section 6.1 therein). Earth noise tends to be deficient in high 
frequencies so additional high-frequency energy is often imparted around seismometer arrays to provide 
high-frequency energy to better resolve shallow velocity structure. We used a sledge-hammer and impact 
plate to provide supplemental high-frequency seismic excitation at varying distances and azimuths outside 
the edges of the seismic receiver arrays. 
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Processing of all nine component combinations of three-component motions from receiver pairs yields a 
tensor Green’s function. The tensor Green’s function is essential to resolve fundamental mode dispersion 
when Rayleigh-wave polarization becomes almost exclusively horizontal at site resonant frequencies. In the 
frequency-bands of site resonance the radial-radial (RR) Green’s function component provides good signal-
to-noise to measure fundamental-mode phase velocities whereas the vertical-vertical (ZZ) Green’s function 
has too little motion to measure fundamental-mode phase velocities in the neighborhood of site resonant 
frequencies. Haney et al. (2012) present analyses showing that the radial-vertical (ZR-RZ) Green’s function 
components can provide valuable constraints on Rayleigh-wave dispersion even when effective source 
excitation has poor azimuthal coverage.  

Wapenaar et al. (2011) show that multidimensional deconvolution (MDD) is most likely to produce the best 
estimates of tensor Green’s functions. In particular, if tensor Green’s function amplitudes are needed MDD 
processing is really the only approach that has the potential to recover realistic amplitudes over wide 
frequency bands since MDD is the most effective method when source excitation is irregular in space and 
frequency. Wapenaar et al. (2011) note that MDD requires matrix inversion which can be unstable. The 
stability of MDD matrix inversion depends on the number of available sources, source aperture, source 
bandwidth and, for multicomponent data, on the number of independent source components. Thus, MDD 
requires spectral analyses of the point-spread function to determine what spatial and temporal frequencies 
can be resolved with matrix inversion (van der Neut et al., 2011). Consequently, MDD is not well-suited for 
semi-automated processing.   

We use phase-stacking (O’Connell and Turner, 2011), which does not require rigorous recovery of Green’s 
function amplitudes, to estimate Rayleigh-wave phase-velocities from offset gathers of station-pair Green’s 
function. The priority for phase-stack processing is to obtain Green’s function responses over as wide a 
frequency bandwidth as possible. Only first-order relative amplitude responses are needed within single 
Green’s function components from single station pairs to successfully estimate slowness-frequency using 
phase stacking. Thus, we seek an ambient-noise interferometry processing approach that maximizes 
Green’s function frequency bandwidth and is robust when implemented as a semi-automated processing 
sequence. 

Vasconcelos and Snieder (2008) demonstrated that scalar deconvolution interferometry successfully 
recovers elastic impulse response between two receivers without the need for an independent estimate of 
the source function. Deconvolution interferometry provides wave arrivals with correct kinematics but 
distorted amplitudes (Draganov et al., 2006; Vasconcelos and Snieder, 2008) which makes deconvolution 
interferometry well suited for our phase-stack approach to estimate phase velocities. Also scalar 
deconvolution produces the maximum frequency bandwidth that can be achieved relative to cross 
correlation (Vasconcelos and Snieder, 2008). Thus, scalar deconvolution ensures that correct wave 
kinematics are recovered over the maximum frequency bandwidth that is possible. For these reasons we 
adapted the scalar deconvolution approach from Vasconcelos and Snieder (2008) to estimate each 
component of the tensor Green’s function from each pair of three-component seismometers. 
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After correction to common instrument response, the three-component motions are rotated into radial and 
transverse horizontal components relative to the azimuth joining the receiver pairs to start the interferometric 
processing. We use relatively short time windows that are long enough to contain all surface-wave arrivals 
for the maximum receiver-pair offsets after deconvolution. We use a prewhitening scheme similar to Bensen 
et al. (2007) to produce independent prewhitening data for each component for each time window. The short 
time windows are overlapped by half the window length which allows subsets of data to be deconvolved 
with time-variation whitening to obtain more deconvolution estimates of Green’s functions for the relatively 
short fixed recording durations at each site of about one hour. Each short time window of each component 
of ground motion is whitened using three successive operations. First amplitudes are regularized in the time 
domain with an automatic gain control (AGC) operator with an operator length of 0.12 s. Second, the 
frequency response is whitened by dividing the Fourier transform of the AGC output by the mean of its 
multitaper estimate of the Fourier amplitude response using five 3π Slepian tapers and the data is returned 
to the time domain via inverse Fourier transform. Third, the same AGC operator used in the first 
preprocessing step is applied to the time-domain data output of the second preprocessing step and then 
transformed to frequency with a forward Fourier transform in preparation for frequency-domain 
deconvolution. 

The numerical implementation of deconvolution from Vasconcelos and Snieder (2008) is based on water-
level deconvolution (Clayton and Wiggins, 1976) given by (equation 7): 

 

(7) 

where s is the vector of source positions, <|u(rB,s)|2>  is the average of the power spectrum of data 
measured at receiver  rB, <|u(rA,s)|2> is the average of the power spectrum of data measured at receiver rA. 
The water-level damping parameter ε is selected to stabilize the deconvolution. In the absence of our three-
step amplitude and spectral whitening processing when ε is too small the deconvolution becomes unstable. 
When ε is too large the deconvolution approaches the result of cross-correlation eliminating the advantages 
of deconvolution.  

One advantage of our three-stage prewhitening process for each short time window prior to deconvolution 
is that a relatively small value of ε  ensures the stability of deconvolution while retaining the advantages of 
deconvolution over cross correlation because ε is small; we use ε = 1% of the mean of  <|u(rB,s)|2> below a 
maximum frequency of interest. The second advantage of our prewhitening process prior to deconvolution 
is that a second deconvolution can be produced by interchanging <|u(rA,s)|2> and <|u(rB,s)|2> in equation 
(7) so that there are two deconvolution estimates of the forward and reverse-time Green’s functions for the 
station pair to average to further reduce the influence of ε and obtain more robust estimate of Green’s 
functions. All the individual time window estimates of Green’s function components are summed to produce 
the final estimates of tensor Greens’ functions for each station pair. 
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2.2.3 Joint Inversion of Rayleigh-Wave Dispersion and H/V for Vs-Depth 

Halliday and Curtis (2008) and Kimman and Trampert (2010) show that, when primary seismic sources are 
confined to the free surface, cross-correlation gives rise to spurious interferences between higher-order 
modes and the fundamental mode, whereas the presence of seismic sources at depth enables the correct 
recovery of all modes independently (Wapenaar & Fokkema 2006). In an urban environment there may be 
some seismic sources at depth due to pumps and other subterranean infrastructure but most seismic noise 
sources are usually located at the free surface consisting primarily of traffic noise. Consequently, we only 
use fundamental-mode dispersion data from ambient-noise interferometry and active-source stacks of 
slowness-frequency estimates in the objective functions for joint inversion of dispersion data and H/V data 
for Vs-depth. Sledge hammer sourcing in stationary phase regions outside the seismic receiver arrays often 
produces seismic records with sufficient signal-to-noise to constrain higher-mode dispersion, and higher-
mode phase velocity can be used as additional constraints on Vs-depth.  

Tuan (2009) showed that H/V responses are essentially the same in cases of large shallow impedance 
contrasts whether H/V is modelled as surface waves or vertically-propagating body waves. In typical soil-
cover site conditions, it is appropriate to model H/V responses as vertically propagating shear-waves instead 
of fundamental-mode surface waves. Thus, model H/V is calculated as the low-strain amplification of the 
nrattle SH-viscoelastic propagator (Boore, 2015) with seismic energy vertically-incident from seismic 
basement located at the bottom of the velocity models. 

Downhill simplex joint-inversion fundamental-mode phase velocities and H/V used a starting model 
produced using the linearized initial dispersion inversion approach of O’Connell and Turner (2011). The key 
characteristic to match from H/V observations is the frequency of maximum H/V. Since the wave-type 
composition contributing to produce H/V is in general not known, it is not realistic to expect to fit absolute 
amplitudes of H/V with amplification estimates from an SH propagator. However, it is instructive to search 
for models that reproduce the first order shape of H/V as a function of frequency while simultaneously fitting 
available phase velocity data. It was necessary to adjust the relative misfit weights of H/V misfit and phase-
velocity misfit during iterative inversion for Vs-depth to avoid having H/V dominate the inversion. Models 
that reproduced H/V shape were always required to reproduce observed phase dispersion within 
measurement uncertainties. 

2.3 Vs-Depth and H/V Data 

Site descriptions and data summaries for each of the eleven seismic stations are presented below. Station 
locations are shown in Figure 1.1. Each subsection includes a review of the geology at the station and the 
results of the Vs-Depth and H/V analysis. Results are presented for each station in Figure 2.1 through 2.11. 
A discussion of the relationship of these results to bedrock geology is presented in section 2.4. 

2.3.1 FNO 

FNO station is located on early Permian shale and siltstone, Pfa, (Heran, et al., 2003; USGS, 2005) (Figures 
1.2, 2.1a), in a forested area bounded by a fence north of the vault resulted in an irregular 2D array 
geometry. Active sourcing was limited to the north, and more azimuthal coverage and offset emanated from 
the southern quadrants. Figure 2.1b shows the station pair raypaths used to generate dispersion images, 
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nominal hammer source positions and offsets, and omitted Sigma4 station that had a faulty GPS. Figure 
2.1c provides three dispersion plots with multimodal picks; all picks derived from all three images are 
combined on each image: from top to bottom: top) Hammer-blow R-component phase stack, mid) 
Dispersion Green’s Function (DGF) vertical-vertical component phase stack, and bottom) DGF radial-radial 
component phase stack (Figure 2.1c). Fundamental mode picks on the R- and ZZ- plots are constrained 
from 5 to 40 Hz and higher mode picks on the R- and RR- plots from 13 to 67 Hz (Figure 2.1c). Figure 2.1d 
shows the DGF for the ZZ-component with first arrival fit line.  

The Figure 2.1e upper plot provides the Vs-depth plot with 1/3 wavelength depth resolution limit; Vs30 is 
548 m/s, Vs-depth at FNO is constrained to approximately 50 meters depth, and we interpret the station to 
be placed on soil approximately 2m thick with Vs ~300-400 m/s, weathered/saprolitic bedrock from 2-14 m 
depth with velocities around 400-650 m/s, and underlying bedrock velocity of 900 m/s to the 50-meter 
resolution limit. The middle plot shows model vs. picked fundamental and higher modes. The lower plot 
shows the H/V ratios for the five Sigma4 stations nearest the FNO vault, which peaks at H/V=2.3 at 7.5 Hz, 
with a broadband secondary peak H/V= 1.5-1.8 from 22 to 39 Hz (Figure 2.1e). 

Figure 2.1f provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 3.0. Figure 2.1g provides the average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds.  

2.3.2 OK-001 

OK-001 station is located inside a school building approximately 93 meters north-northeast of the survey 
array, which was collected on an adjacent football field (Figure 2.2a); and the school grounds are located 
on a Pleistocene sand and gravel (Qt) inset into Paleozoic bedrock (Figure 1.2) (Heran, et al., 2003; USGS, 
2005). Figure 2.2b shows the 3-pronged array geometry, the station pair raypaths used to generate 
dispersion images, nominal hammer source positions and offsets, and omitted Sigma4 location that had a 
faulty GPS. Figures 2.2c and 2.2d each provide three dispersion plots with multimodal picks; all picks 
derived from all six dispersion images are combined and plotted on each dispersion image: from top to 
bottom on Figure 2.2c: top) Hammer-blow Z-component phase stack, mid) DGF vertical-vertical component 
phase stack, and bottom) DGF radial-radial component phase stack. From top to bottom on Figure 2.2d: 
top) R-component phase stack, mid) DGF vertical-radial phase stack, bottom) DGF radial-radial phase 
stack.  Fundamental mode picks on the DGF RR image are constrained from 5 to 18 Hz and higher mode 
picks on remaining dispersion plots from 6 to 80 Hz (Figures 2.2c, 2.2d). Figure 2.2e shows the DGF for the 
RR-component with first arrival fit line, which is better constrained at near offset (2-30 m) and less so from 
30 to 65 m.  

The upper plot on Figure 2.2f provides the Vs-depth curve with 1/3 wavelength depth resolution limit; Vs30 
is 542 m/s, Vs-depth at OK-001 is constrained to approximately 32 meters depth, and we interpret the 
station to be placed on weathered/saprolitic bedrock from 0-6 m depth with velocities around 300-400 m/s, 
and underlying bedrock velocity of 600-700 m/s to the 32 m depth resolution limit. The middle plot shows 
model vs. picked fundamental and higher modes. The lower plot shows the H/V ratios for four Sigma4 
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stations near the center of the three-pronged array, with H/V peaks at ~1.8 at 13 Hz, ~1.7 at 38-42 Hz 
(Figure 2.2f). 

Figure 2.2g provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 6.5. Figure 2.2h provides the average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds.  

2.3.3 OK-002 

OK-002 is located on private property approximately 150 meters south-southeast of the survey array (Figure 
2.3a). Due to access limitations, OK-002 was a linear array collected along the nearest accessible right of 
way (Figure 2.3a). Bedrock is composed of Permian sandstone and conglomerate (Heran, et al., 2003; 
USGS, 2005) (Figure 1.2); bedrock outcrops were observed along the road cut adjacent to the seismic 
survey, but ground conditions at the seismograph vault were unable to be assessed. Figure 2.3b shows the 
six-station linear array geometry, the station pair raypaths used to generate dispersion images which are 
limited to nominal E-W azimuthal coverage with limited offset, and nominal hammer source positions and 
offsets. Figures 2.3c and 2.3d provide three and two dispersion plots, respectively, with multimodal picks; 
all picks derived from all five dispersion images are combined and plotted on each dispersion image: from 
top to bottom on Figure 2.3c: top) DGF ZZ-component phase stack, mid) DGF ZR component phase stack, 
and bottom) hammer blow Z-component phase stack, and on Figure 2.2d: top) DGF TT-component phase 
stack, and bottom) hammer blow T-component phase stack.  Fundamental mode picks are composited from 
the DGF ZZ stack (1.5-14 Hz), ZR stack (24-30 Hz), and TT stack (17-25 and 42-46 Hz).  Higher mode 
picks are based on compositing portions of all five dispersion plots from 8 to 45 Hz (Figures 2.3c, 2.3d). 
Figure 2.3e shows the DGF for the TT-component, and Figure 2.3f shows the DGF ZZ-component with first 
arrival fit lines spanning the ~87 m array total offset.  

Two dispersion models for OK-002 are presented, a Love wave and a Rayleigh wave model. The upper plot 
on Figure 2.3g presents the Love wave model; the Vs-depth curve with 1/3 wavelength depth resolution 
limit; Vs30 is 567 m/s, Vs-depth at OK-002 is constrained to approximately 72 meters depth. The Rayleigh 
wave model is shown in Figure 2.3h. We interpret the station to be placed on saprolite from 0-6 m depth 
with velocities around 300-400 m/s, with an underlying bedrock weathering profile from ~6 to 30 m depth. 
The Love wave model 1/3 wavelength resolution limit is 72 m depth, and the Rayleigh wave model resolution 
limit is? 100 m depth (Figures 2.3g, 2.3h). Unweathered bedrock velocity is ~980 m/s from 45 m depth to 
the resolution limit. The middle plot shows model vs. picked fundamental and higher modes. The lower plot 
shows the modeled H/V ratio at the survey site, with H/V peak at ~2 at 10 Hz (Figure 2.3h). 

Figure 2.3i provides H/V for each of the 6 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 1.9. Figure 2.3j provides the average H/V curve from six Sigma4 Stations combined as an Ln mean, 
smooth mean, and 1σ uncertainty bounds.  

2.3.4 OK-005 

OK-005 is located inside a school building approximately 93 meters east north-east of the survey array, 
which was collected on an adjacent football field (Figure 2.4a); and the school grounds are located on a 
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Pleistocene sand and gravel (Qt) inset into Paleozoic bedrock (Figure 1.2) (Heran, et al., 2003; USGS, 
2005). Figure 2.4b shows the 3-pronged array geometry, the station pair raypaths used to generate 
dispersion images, nominal hammer source positions and offsets, and omitted Sigma4 location that had a 
faulty GPS. Figures 2.4c and 2.4d each provide three dispersion plots with multimodal picks; all picks 
derived from all six dispersion images are combined and plotted on each dispersion image: from top to 
bottom on Figure 2.4c: top) Hammer-blow Z-component phase stack, mid) DGF vertical-vertical component 
phase stack, and bottom) DGF radial-radial component phase stack. From top to bottom on Figure 2.4d: 
top) R-component phase stack, mid) DGF vertical-radial phase stack, bottom) DGF radial-radial phase 
stack.  Fundamental mode picks on the DGF RR image are constrained from 5 to 18 Hz and higher mode 
picks on remaining dispersion plots from 6 to 80 Hz (Figures 2.4c, 2.4d). Figure 2.4e shows the DGF for the 
RR-component with first arrival fit line, which is better constrained at near offset (2-30 m) and less so from 
30 to 65 m.  

The upper plot on Figure 2.4f provides the Vs-depth curve with 1/3 wavelength depth resolution limit; Vs30 
is 542 m/s, Vs-depth at OK-005 is constrained to approximately 32 meters depth, and we interpret the 
station to be placed on weathered/saprolitic bedrock from 0-6 m depth with velocities around 300-400 m/s, 
and underlying bedrock velocity of 600-700 m/s to the 32 m depth resolution limit. The middle plot shows 
model vs. picked fundamental and higher modes. The lower plot shows the H/V ratios for five Sigma4 
stations near the center of the three-pronged array, with H/V peaks at ~1.8 at 13 Hz, ~1.7 at 38-42 Hz 
(Figure 2.4f). 

Figure 2.4g provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 6.5. Figure 2.4h provides the average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds. 

2.3.5 OK-009 

OK-009 station is located inside a school building approximately 170-180 m west northwest of the survey 
array, which was collected on an adjacent open field (Figure 2.5a); and the school grounds are located on 
early Permian sandstone (Pg) (Figure 1.2) (Heran, et al., 2003; USGS, 2005). Figure 2.5b shows the 3-
pronged array geometry, the station pair raypaths used to generate dispersion images, nominal hammer 
source positions and offsets, and omitted Sigma4 location that had a faulty GPS. Figure 2.5c provides three 
dispersion plots with multimodal picks; all picks derived from all three dispersion images are combined and 
plotted on each dispersion image: top) DCG radial-radial component phase stack, mid) DGF vertical-vertical 
component phase stack, and bottom) DGF vertical-radial component phase stack. Fundamental mode picks 
on the DGF RR image are constrained from 4 to 38 Hz and higher mode picks on remaining dispersion plots 
from 21 to 40 Hz. Figure 2.5d shows the DGF for the RR-component with first arrival fit line.  

The lower plot on Figure 2.5e provides the Vs-depth curve; Vs30 is 355 m/s, Vs-depth at OK-009 is 
constrained to approximately 32 meters depth, and we interpret the station to be placed on 
weathered/saprolitic bedrock from 0-6 m depth with velocities < 200 m/s, and underlying bedrock velocities 
ranging from 400-700 m/s to the 32m depth resolution limit. The middle plot shows model vs. picked 



G17AP00021 

04.79170003 Page 17 of 143 

fundamental and higher modes. The upper plot shows the observed vs. modeled H/V ratios, with H/V 
peaking at 2.7 at 6-7 Hz (Figure 2.5e). 

Figure 2.5f provides a plot of each Sigma4 location symbolized as functions of peak H/V by color and Slow 
Thickness in meters by size to demonstrate the high lateral variability measured at the OK-009 site. Figure 
2.5g provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum H/V 
of 5.4. Figure 2.5h provides the site average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds. 

2.3.6 TUL-1 

TUL-1 station location is on OSU property, inside a fence which constrained the array geometry, and is 
positioned adjacent to an open steel cased well (which could potentially provide a good location for a 
downhole log for future studies) (Figure 2.6a); the site is (regionally) mapped as Middle Pennsylvanian shale 
(Ipw), but we observed weathered/oxidized sandstone boulders and in-place outcrops across the ridge top, 
so more detailed mapping may be warranted (Figure 1.2) (Heran, et al., 2003; USGS, 2005). Figure 2.6b 
shows the irregular array geometry, the station pair raypaths used to generate dispersion images, and 
nominal hammer source positions and offsets. Figure 2.6c provides three dispersion plots and Figure 2.6d 
shows? two additional plots with multimodal picks: Figure 2.6c top) hammer blow radial component phase 
stack, mid) DGF radial-vertical component phase stack, and bottom) hammer blow vertical component 
phase stack, and Figure 2.6d top) DGR T-T component phase stack and bottom) hammer-blow T-
component. Fundamental mode picks on the DGF TT image are constrained from 5 to 23 Hz and higher 
mode picks on remaining dispersion plots are constrained? from 4 to 70 Hz. Figure 2.6e shows the DGF for 
the TT-component, and Figure 2.6g for the RZ-component with first arrival fit line.  

The upper plot on Figure 2.6g provides the Love-wave derived Vs-depth curve and 1/3 wavelength depth 
resolution limit; Vs30 is 741 m/s, Vs-depth at OK-009 is constrained to approximately 93 meters depth, and 
we interpret the station to be placed on weathered/saprolitic bedrock from 0-8 m depth with velocities from 
300-400 m/s, and underlying bedrock velocities ranging from 1.2 to 1.4 km/s from 8 to 40 m, and >1.6 km/s 
below to the resolution limit. The middle plot shows model vs. picked fundamental and higher modes. The 
lower plot shows the site-average and modeled H/V ratios for all Sigma4, with site average H/V peaking at 
4.3 at 15 Hz (Figure 2.6g). For comparison, Figure 2.6h shows the Rayleigh wave-derived Vs- and Vp-depth 
curves; this method estimates Vs30 of 694 m/s and comparable Vs-depth structure. Figure 2.6i compares 
the Love- and Rayleigh wave-derived Vs-depth plots directly.  

Figure 2.6j provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 7.2. Figure 2.6k provides the site average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds. 

2.3.7 V35A 

V35A is located in a field on an adjacent property approximately 200-210 m southeast of the survey array 
(Figure 2.7a); and this survey and the seismograph are located on Late Pennsylvanian shale (Figure 1.2) 
(Heran, et al., 2003; USGS, 2005). Figure 2.7b shows the 3-pronged array geometry, the station pair 
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raypaths used to generate dispersion images, nominal hammer source positions and offsets, and omitted 
Sigma4 location that had a faulty GPS. Figure 2.7c provides three dispersion plots with multimodal picks; 
all picks derived from all three dispersion images are combined and plotted on each dispersion image: top) 
hammer-blow radial component phase stack, mid) DGF vertical-vertical component phase stack, and 
bottom) hammer-blow vertical component phase stack. Fundamental mode picks on the hammer blow 
vertical image are constrained from 11 to 33 Hz and higher mode picks on remaining dispersion plots are 
constrained? from 7 to 69 Hz. Figure 2.7d shows the DGF for the RR-component with first arrival fit line.  

The upper plot on Figure 2.7e provides the Vs-depth curve; Vs30 is 580 m/s, Vs-depth at V35A is 
constrained to approximately 36 meters depth, and we interpret the station to be placed on 
weathered/saprolitic bedrock to 7-10m depth with velocities < 350 m/s, and underlying bedrock velocities 
ranging from 600-800 m/s to the 32 m depth resolution limit. The middle plot shows model vs. picked 
fundamental and higher modes. The lower plot shows the modeled H/V ratios vs. those measured by the 
central two stations, with H/V peaking at 2.5 at 11 Hz (Figure 2.7e). 

Figure 2.7f provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 4.0. Figure 2.7g provides the site average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds. 

2.3.8 W35A 

W35A station is located in a pasture near a fence. The survey array is centered about the vault with four 
array legs (Figure 2.8a).  The strong motion station is located on early Permian shale (Pw) (Figure 1.2) 
(Heran, et al., 2003; USGS, 2005). Figure 2.8b shows the 4-pronged array geometry, the station pair 
raypaths used to generate dispersion images, nominal hammer source positions and offsets, and omitted 
Sigma4 location that had a faulty GPS. Figure 2.8c provides three dispersion plots with multimodal picks; 
all picks derived from all three dispersion images are combined and plotted on each dispersion image: top) 
DGF vertical-vertical component phase stack, mid) hammer-blow vertical component phase stack, and 
bottom) DGF vertical-radial component phase stack. Fundamental mode picks on the DGF vertical-vertical 
image are constrained from 5 to 50 Hz and higher mode picks on remaining dispersion plots from 30 to 75 
Hz. Figure 2.8d shows the DGF for the ZZ-component with first arrival fit line.  

The upper plot on Figure 2.8e provides the Vs-depth curve; Vs30 is 494 m/s, Vs-depth at W35A is 
constrained to approximately 31 meters depth, and we interpret the station to be placed on 
weathered/saprolitic bedrock to 10 m depth with velocities < 380 m/s, and underlying bedrock velocities 
ranging from 500-640 m/s to the 31 m depth resolution limit. The middle plot shows model vs. picked 
fundamental and higher modes. The lower plot shows the modeled H/V ratios vs. measured by the central 
(nearest to the vault) five stations, with H/V peaking at 2.3 at 43 Hz on Sigma4 51006 (Figure 2.8e). 

Figure 2.8f provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 2.0. Figure 2.8g provides the site average H/V curve from all 15 Sigma4 Stations combined as an Ln 
mean, smooth mean, and 1σ uncertainty bounds. 
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2.3.9 W36A 

W36A station is located on private property approximately 620 meters south of the survey array (Figure 
2.9a). Due to access limitations, W36A was a linear array collected along the nearest accessible right of 
way (Figure 2.9a). Bedrock is composed of middle Pennsylvanian sandstone (IPca) (Heran, et al., 2003; 
USGS, 2005) (Figure 1.2); bedrock outcrops were observed along the roadcut adjacent to the seismic 
survey, but ground conditions at the strong motion vault were unable to be assessed. Figure 2.9b shows 
the six-station linear array geometry, the station pair raypaths used to generate dispersion images limited 
to nominal E-W azimuthal coverage with limited offset, and nominal hammer source positions and offsets. 
Figures 2.9c provides three dispersion plots with multimodal picks; all picks derived from all three dispersion 
images are combined and plotted on each dispersion image: from top to bottom: top) hammer blow Z-
component phase stack, mid) DGF ZZ component phase stack, and bottom) hammer blow R-component 
phase stack.  Fundamental mode picks are constrained from 5 to 22 Hz by the DGF ZZ-component stack.  
Higher mode picks are based on compositing portions of the three dispersion plots from 15 to 60 Hz (Figure 
2.9c). Figure 2.9d shows the DGF for the ZZ-component.  

The upper plot on Figure 2.9e provides the Vs-depth curve with 1/3 wavelength depth resolution limit; Vs30 
is 670 m/s, Vs-depth at W36A is constrained to approximately 72 meters depth. We interpret the station to 
be placed on saprolite/weathered bedrock from 0-5 m depth with velocities around 330-500 m/s, and 
underlying unweathered bedrock velocity of 800 m/s to resolution depth (Figure 2.9e). The middle plot 
shows model vs. picked fundamental and higher modes. The lower plot shows the modeled and measured 
H/V ratio from 5 Sigma4s (Figure 2.9e). 

Figure 2.9f provides H/V for each of the 6 Sigma4 stations from 0.1 to 100 Hz, and the site mean maximum 
H/V of 3.7. Figure 2.9g provides the average H/V curve from six Sigma4 Stations combined as an Ln mean, 
smooth mean, and 1σ uncertainty bounds.  

2.3.10 WMOK 

WMOK station is a granitic bedrock site, and is the furthest station from the Prague event that was measured 
for this study. The survey array was limited by outcrop to the east and west, so we centered a ring of sensors 
about the vault with two array legs extending north-south (Figure 2.10a). The strong motion station is located 
on middle Cambrian granite of the Wichita Mountains (Cwg) (Figure 1.2) (Heran, et al., 2003; USGS, 2005). 
Figure 2.10b shows the 2-pronged and ring array geometry, the station pair raypaths used to generate 
dispersion images, nominal hammer source positions and offsets, and omitted Sigma4 location that had a 
faulty GPS. Figure 2.10c provides three dispersion plots with multimodal picks; all picks derived from all 
three dispersion images are combined and plotted on each dispersion image: top) hammer blow vertical 
component phase stack, mid) hammer-blow radial component phase stack, and bottom) DGF vertical-
vertical component phase stack. Fundamental mode picks on the hammer blow vertical image are 
constrained from 16 to 53 Hz and higher mode picks on remaining dispersion plots from 30 to 79 Hz. Figure 
2.10d shows the DGF for the ZZ-component with first arrival fit line.  

The upper plot on Figure 2.10e provides the Vs-depth curve; Vs30 is 1821 m/s, Vs-depth at WMOK is 
constrained to approximately 36 meters depth, and we interpret the station to be placed directly into granitic 
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bedrock with a thin weathered zone in the upper 5 meters with Vs > 1100 m/s, and > 2100 m/s below. The 
middle plot shows model vs. picked fundamental and higher modes. The lower plot shows the modeled H/V 
ratios vs. those measured by the central (nearest to the fault) Sigma4 station, with H/V peaking at 2.3 at 43 
Hz on Sigma4 51002 (Figure 2.10e). 

Figure 2.10f provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean 
maximum H/V of 4.2. Figure 2.10g provides the site average H/V curve from all 15 Sigma4 Stations 
combined as an Ln mean, smooth mean, and 1σ uncertainty bounds. 

2.3.11 X34A 

X34A station is located in a field, and the Sigma4 survey array is 3-pronged and centered about the vault 
(Figure 2.11a), which is located on alluvial floodplain deposits overlying early Permian conglomeratic 
bedrock (Pc) (Figure 1.2) (Heran, et al., 2003; USGS, 2005). Figure 2.11b shows the 3-pronged array 
geometry, the station pair raypaths used to generate dispersion images, nominal hammer source positions 
and offsets, and omitted Sigma4 location that had a faulty GPS. Figure 2.11c provides three dispersion plots 
with multimodal picks; all picks derived from all three dispersion images are combined and plotted on each 
dispersion image: top) hammer-blow vertical component phase stack, mid) hammer blow radial component 
phase stack, and bottom) DGF radial-radial component phase stack. Fundamental mode picks on the 
hammer blow vertical image are constrained from 5 to 14 Hz and higher mode picks on remaining dispersion 
plots from 15 to 48 Hz. Figure 2.11d shows the DGF for the RR-component with first arrival fit line.  

The upper plot on Figure 2.11e provides the Vs-depth curve; Vs30 is 461 m/s, Vs-depth at X34A is 
constrained to approximately 40 meters depth, and we interpret the station to be placed on alluvium 10 m 
thick with velocities ranging from 200-400 m/s, and underlying Permian bedrock velocities ranging from 500-
1000 m/s, probably due to a paleo-weathering profile to the 40 m depth resolution limit. The middle plot 
shows model vs. picked fundamental and higher modes. The lower plot shows the modeled H/V ratios vs. 
those measured by the central five stations, with H/V peaking at 2.6 at 15 Hz on Sigma4 station 510002 
(Figure 2.11e). 

Figure 2.11f provides H/V for each of the 15 Sigma4 stations from 0.1 to 100 Hz, and the site mean 
maximum H/V of 3.4. Figure 2.11g provides the site average H/V curve from all 15 Sigma4 Stations 
combined as an Ln mean, smooth mean, and 1σ uncertainty bounds. Figure 2.11h provides the H/V curve 
from Sigma4 station 510002 nearest the X34A vault.  

2.4 Site Geology, Vs, and H/V Results 

Table 2-1 summarizes the strong motion station data obtained for this study. For each site, Lat-Long 
coordinates, location name, geologic map symbol, unit age, and (regionally mapped) rock type are provided.  

Results from this study tabulated here include Vs30 (m/s), NEHRP modified site classification, depth in 
meters to 1.0 Km/s (Z1.0), and site mean maximum horizontal:vertical ratio. Most sites are NEHRP Class 
C. Weathering profile thickness varies across the sites, which is a controlling factor on the Vs30 value but 
generally appears to be ≤10 meters. Beneath the saprolitic/weathered profile, generally the unweathered 
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sedimentary Paleozoic rock units are approximately 800 m/s. H/V values are variable across the sites, and 
within the Sigma4 arrays.   

Table 2-1. Site-Specific Survey Data 

 

STA LAT LON LOCATION
MAP 
SYMBOL UNIT_AGE ROCK

Vs30 
(m/s)

NEHRP 
Class

Z1.0 
(m)

Site Mean 
Max H/V 

FNO 35.257380 -97.401150
Franklin, 
Norman Pfa

Early 
Permian shale 548 C2 - 3.0

OK001 35.561090 -97.289490

Jones High 
School, 
Jones Qt Pleistocene sand 542 C2 - 6.5

OK002 35.549340 -97.196630 Harrah Pg
Early 
Permian sandstone 567 C2 - 1.9

OK005 35.654860 -97.191100

Luther 
Middle 
School, 
Luther Pw

Early 
Permian shale 596 C2 - 3.2

OK009 35.581310 -97.422920

Oakdale 
School, 
Edmond Pg

Early 
Permian sandstone 355 D3 - 5.4

TUL1 35.910473 -95.791695 Leonard IPw

Middle 
Pennsylvania
n shale 694 C3 16 7.2

V35A 35.762600 -96.837800

Meyer 
Ranch 
Chandler IPv

Late 
Pennsylvania
n shale 580 C2 - 4.0

W35A 35.152729 -96.874534 Tecumseh Pw
Early 
Permian shale 494 C2 - 2.0

W36A 35.139300 -96.226400 Wetumka IPca

Middle 
Pennsylvania
n sandstone 670 C3 - 3.7

WMOK 34.737841 -98.780711
Wichita 
Mountains Cwg

Middle 
Cambrian granite 1821 A 0.5 4.2

X34A 34.601020 -97.832560 Smith Ranch Pc
Early 
Permian

conglomer
ate 461 C1 - 3.4
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3. SEISMOLOGICAL SITE RESPONSE 

3.1 Spectral Analysis  

A spectral inversion methodology is used to independently derive the site response at seismograph stations 
that recorded the Mw 5.6 Prague, Oklahoma earthquake of 6 November 2011. The methodology has been 
previously applied in the simultaneous identification of source, path, and site effects from an inversion of 
recorded ground motions (Hartzell and Mendoza, 2011). The procedure allows for identification of 
resonance peaks in the site response that can be attributed to weakly consolidated sediments at depth or 
other velocity discontinuities, and the results can be compared to those obtained from theoretical 
calculations and/or empirical measurements. Although a more robust determination of the site amplification 
may be obtained using multiple sources at different distances and azimuths, the factors derived here using 
data from a single earthquake allow the identification of sites with anomalous amplification, providing 
important insight into the characterization of ground motion in the Oklahoma City region. 

The inversion method follows the procedure used by Hartzell and Mendoza (2011), where the ground 
motions at the recording sites are fit with a Brune (1970; 1971) model that expresses the shear-wave ground 
displacement spectra U(f) as a function of earthquake seismic moment MO, source spectral corner frequency 
fc, anelastic attenuation Q(f), geometrical spreading r-b and site response S(f) and is given by (equation 8) 

𝑈𝑈(𝑓𝑓) =
RθφθφFV
4πρβ3

M0
1

1 + (𝑓𝑓𝑓𝑓𝑐𝑐
)2
𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝜋𝜋𝑓𝑓𝑟𝑟
𝛽𝛽𝛽𝛽(𝑓𝑓)� r−𝑏𝑏S(𝑓𝑓) 

(8) 

where Rθφ is the shear-wave radiation pattern, F is the free-surface effect set to 2.0, and V is set to 1.0 to 
partition energy equally onto horizontal components. The density ρ is set to 2.75 g/cm3, and the shear-wave 
velocity β is set to 3.7 km/s. We initially tried using several values for the geometrical spreading factor b and 
found that a factor of 0.94 provided source parameters most consistent with the known size of the 
earthquake. 

The observed spectra Uobs(f) are inverted for best-fitting values of MO, fc, Q(f), and S(f), where Q(f) is 
parameterized as QOfα such that fα allows for frequency dependence. To prevent trade-offs between seismic 
moment and long-period noise, S(f) is set at 1.0 for frequencies below 0.15 Hz since site amplification should 
be minimal at lower frequencies. Raw seismic velocity waveforms recorded at local and regional distances 
for the Prague earthquake were collected from the IRIS Data Management Center (http://www.iris.edu/hq/). 
The data were then reviewed for quality and deconvolved to ground displacement between 0.04 and 10.0 
Hz, although each record was individually examined to determine the appropriate band for analysis within 
this frequency range.  

The analysis requires selecting observation stations with displacement spectra that have flat, low-frequency 
levels (~0.1 to 1.0 Hz) consistent with a Brune (1970; 1971) spectrum. The recorded time series are first 
corrected for the instrument response and then windowed to a fixed record length (within 100 sec of the S 
arrival) to include direct, refracted and coda S waves. The horizontal-component records are independently 
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Fourier-transformed and then vector-summed to obtain a displacement spectrum for each station. This 
observed spectrum is smoothed using a 1/3-octave smoothing function and then sampled at designated 
frequencies to identify the spectral values to be used in the inversion. These depend on the quality of the 
data, which varies with the instrument type and the noise level. In the case of the Prague records, horizontal 
displacement spectra for stations to the northeast of the epicenter show a strong dip between about 0.5 and 
1 Hz that reflects strong azimuthal effects. An example of this feature is shown in Figure 3.1 for station 
TUL1. These path effects would be mapped into anomalous site effects in our inversion, and we restrict our 
analysis only to those records consistent with a Brune model. We consider stations within 2° of the 
earthquake epicenter. This distance range includes the 11 locations where on-site field measurements were 
performed as described in Section 2 of this report. Of these 11 sites, station TUL1 is excluded due to the 
strong observed path effects. Stations FNO and X34A are also excluded since the horizontal components 
are clipped at both of these sites and do not allow a proper reconstruction of the S-wave spectra.  
Table 3-1 gives the stations included in our seismological site analysis.  

Table 3-1. Station Coordinates and Distance from Epicenter  
STATION  LATITUDE, °N  LONGITUDE, °W  DISTANCE, °  

V35A 35.76 96.84 0.22 

OK002 35.55 97.20 0.33 

OK005 35.65 97.19 0.35 

W35A 35.15 96.87 0.37 

OK001 35.56 97.29 0.40 

OK009 35.58 97.42 0.51 

W36A 35.14 96.23 0.60 

U35A 36.37 96.73 0.82 

X36A 34.57 96.35 1.03 

W37B 35.14 95.43 1.16 

X35A 34.40 96.97 1.16 

X37A 34.59 95.37 1.49 

T34A 37.02 97.19 1.51 

Y35A 33.91 97.04 1.66 

Y36A 33.90 96.28 1.68 

X38A 34.67 94.83 1.81 

Y37A 33.98 95.62 1.83 

WMOK 34.74 98.78 1.84 

W38A 35.07 94.52 1.89 

U32A 36.38 99.00 2.00 

 
The inversion applies the nonlinear hybrid global search algorithm of Liu et al. (1995) that uses a 
combination of simulated annealing and downhill simplex methods to fully explore the solution space. 
Squared differences between the logarithms of observed and model spectra are minimized over all spectral 
frequencies and observation stations, averaged over the total number of frequencies used for all stations. 
Our approach here has been to first set prescribed ranges for each of the MO, fc, and Q(f) parameters based 
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on known or published CEUS attenuation relationships and to solve for S(f) using these intervals. For MO, 
we set the limits between 1.0 and 10.0 x 1024 dyne-cm based on the expected size of the earthquake, with 
the corner frequency fc limited to values between 0.15 and 0.35. For the frequency dependence of Q (Q(f) 

= QOfα), we use a range of 600 to 1200 for QO and a range of 0.1 to 0.4 for α based on results obtained by 
Atkinson (2004), Erickson et al. (2004), Hartzell and Mendoza (2011), and McNamara et al. (2014) from the 
analysis of frequencies above 1 Hz for CEUS earthquakes. We first invert the spectra from stations located 
within 1° of the earthquake using these prescribed intervals and up to 45 predefined frequencies in the 
range of 0.05 to 10 Hz. This provides initial values for MO, fc, α and QO that we then use to further restrict 
each parameter in a second inversion for site response at all distances. Table 3-2 gives the source and 
attenuation parameters obtained both from the initial inversion of the spectra using stations within 1° and 
from the final inversion for all stations at distances up to 2°. The fits between observed and predicted 
displacement spectra for the final inversion are shown in Figures 3.2 to 3.21 for stations within 2° of the 
earthquake epicenter.  

Table 3-2. Source and Attenuation Parameters 
Inversion MO (dyne-cm) fc (Hz) α QO 

Initial,  
stations within 1° 3.5 x 1024 0.252 0.394 1100 

Final,  
stations within 2° 4.3 x 1024 0.247 0.386 1101 

 

3.2 Inversion Results and Site Response 

The seismic moment and corner frequency obtained in the final inversion (Table 3-2) suggest an Mw 
magnitude of 5.7 and a radial source dimension of 4-5 km for the 2011 Prague earthquake, consistent with 
the rupture extent inferred by Sun and Hartzell (2014) from a finite-fault analysis using regionally-recorded 

seismic waveforms. For the attenuation, we obtain the relation Q(f) = 1100f0.386, within the bounds of 
attenuation parameters previously measured in the CEUS. The inversion also recovers the frequency-
dependent site response at each site. These are shown as black curves in Figures 3.22 to 3.24 for the 20 
stations located within 2° of the earthquake epicenter. The plots show strong amplification (more than a 
factor of 2) at several sites that include stations OK001, OK002, OK005, OK009, W35A, T34A, U32A, U35A, 
W37B, W38A, X35A and X36A. We have examined the validity of the site response spectra obtained from 
the spectral inversion by comparing against horizontal-to-vertical spectral ratios (HVSR) derived from the 
horizontal and vertical components recorded for the 2011 Prague earthquake. The ratios are calculated 
from the S-wave power spectral densities observed at each site using the Kawase et al. (2011) relation 
(equation 9). 

 

(9) 

for earthquake ground motion, where H1 and H2 are the two horizontal components, V is the vertical 
component, and ω is the angular frequency. These ratios are shown in blue in Figures 3.22 to 3.24. Although 
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the HVSR approach cannot reliably identify the absolute amplification, it provides an estimate of the 
fundamental resonance frequency of soil sites. The lower-frequency limit was identified from a visual review 
of the vertical spectra to minimize lower-frequency noise at each site and varies between 0.3 and 0.5 Hz. 
The higher-frequency limit is defined by the sampling rate of each station.  

The ratios compare favorably with the site response spectra obtained for stations that exhibit large 
amplification (greater than 2). We note that an amplification factor near 2 is observed at a frequency of 0.15 
Hz in the spectral response of station WMOK (Figure 3.22); however, this resonance frequency is not visible 
in the WMOK HVSR curve. A review of the horizontal and vertical S-wave spectra recorded for the 2011 
earthquake at station WMOK reveals a spectral peak at around this frequency for both horizontal and vertical 
components. The similarity in horizontal and vertical spectra in this frequency range indicates that the 
spectral peaks would cancel out in the HVSR computation. The spectral inversion, on the other hand, would 
identify response peaks present in the horizontal recordings. This observation points out a possible 
uncertainty in HVSR calculations caused by amplification on the vertical component. Also, spectral 
responses (black curves) at many of the stations exhibit a prominent peak at a frequency of about 0.3 Hz. 
This spectral peak in the ground motion has been observed at sites in Oklahoma and Kansas for several 
induced earthquakes that have occurred within the last decade (e.g., Rennolet et al., 2017). It would be 
worthwhile to investigate this feature to see if it reflects general crustal properties across the region. 

Also shown in Figure 3.22 are the SH transfer functions (shown in red) for a horizontally-stratified medium 
(Thomson, 1950) calculated using the velocity profiles obtained from the on-site field measurements 
completed at or near stations OK001, OK002, OK005, OK009, V35A, W35A, W36A and WMOK. The SH 
amplification curves are generally flat at frequencies lower than 5 to 10 Hz but are consistent with the 
theoretical H/V curves calculated for these sites in the previous section (e.g., Figs. 2.2f, 2.3g, 2.4e, 2.7e). 
The SH transfer functions, however, do not coincide with the resonance peaks suggested by the 
seismological analysis, including the spectral inversion results and the observed HVSR curves. This result 
is due to the fact that there is little overlap between the frequency ranges among the different methods. 
Amplification observations from the spectral analysis thus appear to incorporate velocity variations at depths 
greater than those sampled by the on-site geophysical surveys, which are most sensitive to the soil structure 
in the top 30-50 meters. These deeper structures would contribute to the total site response and are 
important to document for an appropriate recovery of the effective ground motions. 
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4. SUMMARY 

Geophysical field investigations were conducted to obtain robust estimates of Vs-velocity variation down to 
30 m depth at selected seismograph station locations near Oklahoma City. Some of these stations also 
recorded the Mw 5.6 Prague, Oklahoma earthquake of 6 November 2011, allowing an independent 
derivation of broadband site-response parameters from the earthquake recordings. 

The field investigations included targeted active-source geophysical surveys using I-, Y- or K-shaped 3-
component sensor arrays deployed at or near the seismic-station locations. Rayleigh-wave dispersion 
curves were obtained at each site using an Interferometric Multichannel Analysis of Surface Waves 
(IMASW) approach. The 3-component field recordings from each array sensor were also used to calculate 
H/V ratios for each site that identify resonant frequencies within a wide 0.25 to 100 Hz frequency range. The 
fundamental-mode phase velocities obtained from the IMASW analysis and the field-derived H/V ratios were 
then simultaneously inverted to recover Vs-Depth models, allowing a NEHRP site classification at each site.  

Broadband horizontal waveforms recorded within 2o of the 2011 Prague earthquake epicenter were 
analyzed using a spectral inversion methodology that recovers the source properties, the anelastic 
attenuation effects, and the site response parameters that contribute to the observed horizontal 
displacement spectra at each site. This provides estimates of the earthquake size, the wave attenuation 
properties along the source-station propagation path, and the site amplification based on the weak recorded 
ground motions. The site-response spectra recovered from this process identify peaks and resonance 
frequencies that are consistent with horizontal-to-vertical spectral ratios calculated at the same sites using 
the earthquake recordings. The seismologic analyses include eight of the seismic-station sites where 
geophysical field measurements were performed. For these sites, there is little overlap between the 
frequency ranges included in the seismological investigation and those sampled in the field measurements. 
The spectral analysis incorporates velocity variations at depths greater than 50 m that contribute to the 
effective ground motion. 
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6. DISSEMENATION OF RESULTS 

The USGS Science Database may host the csv, SEGY, and GIS survey/metadata files. O’Connell and 
Turner plan to co-author a forthcoming SRL article with Bill Stephenson to present all the recent site-specific 
Oklahoma Vs and H/V survey data (including data from Cushings, Fairview, etc.) in a single peer-reviewed 
resource. Mendoza plans to prepare a scientific article in collaboration with Stephen Hartzell to publish the 
seismological site response study in a peer-reviewed journal.  
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Figure 1.1. Regional location map.
Page 31 of 143

G17AP00021 



")

")

_̂

#*

#* #*

#*

#*

#*

#*

#* #*

#*

#*

O K L A H O M A
T E X A S

Oklahoma City

Tulsa

FNO

OK001
OK002

OK005
OK009

TUL1

V35A

W35A W36A

WMOK

X34A

Mw 5.6,
11/6/2011

Pf

IPv

Pfa

PchQt
IPva

Pg
Pw

Pc

IPse IPbo
IPw

Pr

Pd

Pcc

Phy

IPoPpo
IPjf

Ka
Kcf

Kb

Kw

96°0'W97°0'W98°0'W99°0'W

36
°0

'N
35

°0
'N

34
°0

'N

N
0 20 mi.

0 40 km

P:
\P

ro
je

ct
s\

79
_1

70
0\

04
_7

91
70

00
3_

Pr
ag

ue
_O

K
_E

Q
_N

E
H

R
P

\0
5_

G
ra

ph
ic

s\
1.

2_
G

eo
lo

gi
cM

ap
.m

xd
; j

.h
ol

m
be

rg
; 5

/1
1/

20
17

#* Seismic stations
OK001

Explanation

_̂ Earthquake epicenter, November 6, 2011

Figure 1.2 Geologic map and station locations.
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Figure 1.3 Explanation of geologic units.
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Figure 2.1b FNO station dispersion pathways and source positions.
Page 35 of 143

G17AP00021 



FNO Hammer-Blow R-Component Phase Stack

20 40 60
Frequency (Hz)

0.001

0.002

0.003

0.004
Sl

ow
ne

ss
 (s

/m
)

20 40 60

0.001

0.002

0.003

0.004

1000

500

333

250

Ph
as

e 
ve

lo
ci

ty
 (m

/s
)

FNO DGF ZZ Phase Stack

20 40 60
Frequency (Hz)

0.001

0.002

0.003

0.004

Sl
ow

ne
ss

 (s
/m

)

20 40 60

0.001

0.002

0.003

0.004

1000

500

333

250

Ph
as

e 
ve

lo
ci

ty
 (m

/s
)

FNO DGF RR Phase Stack

20 40 60
Frequency (Hz)

0.001

0.002

0.003

0.004

Sl
ow

ne
ss

 (s
/m

)

20 40 60

0.001

0.002

0.003

0.004

1000

500

333

250
Ph

as
e 

ve
lo

ci
ty

 (m
/s

)

Figure 2.1c. FNO multimodal p-f dispersion images and picks. 
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Figure 2.1d. FNO vertical component dispersion green’s function.
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Figure 2.1e. FNO Vs-depth, Vs30, and nearfi eld H/V model.
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Figure 2.1f. FNO all stations H/V.
Page 39 of 143

G17AP00021 



FNO Average H/V From 15 Stations

0.1 1.0 10.0 100.0
Frequency (Hz)

0

1

2

3

4
H

/V

One Sigma
Smooth Mean
Ln Mean

Figure 2.1g. FNO site average H/V.
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Figure 2.2a. OK-001 site location.
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Figure 2.2b. OK-001 station dispersion pathways and source positions.
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Figure 2.2c. OK-001 multimodal p-f dispersion images and picks.
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Figure 2.2d. OK-001 additional multimodal p-f dispersion images and picks.

Page 44 of 143

G17AP00021 



OK-001 DGF RR-Component

0

10

20

30

40

50

60

St
at

io
n 

Se
pa

ra
tio

n 
(m

)

0.0 0.1 0.2 0.3 0.4
Time (s)

Figure 2.2e. OK-001 radial component dispersion Green’s Function.
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Figure 2.2f. OK-001 Vs-depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.2g. OK-001 all stations H/V.
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Figure 2.2h. OK-001 site average H/V.
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Figure 2.3a. OK-002 site location.
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Figure 2.3b. OK-002 station dispersion pathways and source positions.

Page 50 of 143

G17AP00021 



OK-002 DGF ZZ-Component Phase Stack

10 20 30 40
Frequency (Hz)

0.001

0.002

0.003

0.004

0.005
Sl

ow
ne

ss
 (s

/m
)

10 20 30 40

0.001

0.002

0.003

0.004

0.005

1000

500

333

250

200

Ph
as

e 
ve

lo
ci

ty
 (m

/s
)

OK-002 DGF ZR-Component Phase Stack

10 20 30 40
Frequency (Hz)

0.001

0.002

0.003

0.004

0.005

Sl
ow

ne
ss

 (s
/m

)

10 20 30 40

0.001

0.002

0.003

0.004

0.005

1000

500

333

250

200

Ph
as

e 
ve

lo
ci

ty
 (m

/s
)

OK-002 Hammer-Blow Z-Component Phase Stack

10 20 30 40
Frequency (Hz)

0.001

0.002

0.003

0.004

0.005

Sl
ow

ne
ss

 (s
/m

)

10 20 30 40

0.001

0.002

0.003

0.004

0.005

1000

500

333

250

200
Ph

as
e 

ve
lo

ci
ty

 (m
/s

)

Figure 2.3c. OK-002 dispersion Green’s Function ZZ and ZR 
multimodal p-f dispersion images and picks.
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Figure 2.3d. OK-002 dispersion Green’s Function TT component 
multimodal p-f dispersion images and picks.
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Figure 2.3e. OK-002 TT component dispersion Green’s Function.
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Figure 2.3f. OK-002 ZZ component dispersion Green’s Function.
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Figure 2.3g. OK-002 Love Wave Vs-Depth, Vs30, and H/V model.
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Figure 2.3h. OK-002 Rayleigh Wave Vs-depth, Vs30, and H/V model.
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Figure 2.3i. OK-002 all stations H/V.
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Figure 2.3j. OK-002 site average H/V.
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Figure 2.4a. OK-005 site location.
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Figure 2.4b OK-005 station dispersion pathways and source positions.
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Figure 2.4c. OK-005 multimodal p-f dispersion images and picks.
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Figure 2.4d. OK-005 vertical component dispersion Green’s Function.
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Figure 2.4e. OK-005 Vs-depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.4f. OK-005 all stations H/V.
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Figure 2.4g. OK-005 site average H/V.
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Figure 2.5a. OK-009 site location.
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Figure 2.5b OK-009 station dispersion pathways and source positions.
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Figure 2.5c. OK-009 multimodal p-f dispersion images and picks.
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Figure 2.5d. OK-009 radial component dispersion Green’s Function.
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Figure 2.5e. OK-009 Vs-depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.5f. OK-009 map view slow thickness variations and maximum H/V.
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Figure 2.5g. OK-009 all stations H/V.
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Figure 2.5h. OK-009 site average H/V.
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Figure 2.6a. TUL-1 site location.
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Figure 2.6b. TUL-1 station dispersion pathways and source positions.
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Figure 2.6c. TUL-1 R-, RZ-, and Z-component multimodal
p-f dispersion images and picks.
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Figure 2.6d. TUL-1 TT- and T-component multimodal
p-f dispersion images and picks.
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Figure 2.6e. TUL-1 TT component dispersion Green’s Function.
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Figure 2.6f. TUL-1 RZ component dispersion Green’s Function.
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Figure 2.6g. TUL-1 Love Wave Vs-Depth, Vs30, and H/V model.
Page 80 of 143

G17AP00021 



TUL1

0 500 1000 1500 2000 2500 3000
Vs (m/s)

100

80

60

40

20

0
D

ep
th

Third Wavelength Limit

Vs30=694 m/s
Vs
Vp

Rayleigh-Wave Dispersion

0 20 40 60 80
Frequency (Hz)

0

500

1000

1500

2000

Ph
as

e 
Ve

lo
ci

ty
 (m

/s
)

Model Fundamental Mode
Picked Fundamental Mode

Picked Higher Mode(s)
Model Higher Modes

0 5 10 15 20 25 30
Frequency (Hz)

0

1

2

3

4

5

H
/V

Site-Average H/V
Model H/V

Figure 2.6h. TUL-1 Rayleigh Wave Vs-Depth, Vs30, and H/V model.
Page 81 of 143

G17AP00021 



TUL1: Comparison of Rayleigh- and Love-Wave Vs Models

0 500 1000 1500 2000
Vs (m/s)

80

60

40

20

0
D

ep
th

Rayleigh-Wave Vs (Vs30=694 m/s)
Love-Wave Vs (Vs30=741 m/s)

Figure 2.6i. TUL-1 Rayleigh and Love Wave Vs-depth model comparison.
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Figure 2.6j. TUL-1 all stations H/V.
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Figure 2.6k. TUL-1 site average H/V.
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Figure 2.7a. V35A site location.
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Figure 2.7b. V35A station dispersion pathways and source positions.
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Figure 2.7c. V35A multimodal p-f dispersion images and picks.
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Figure 2.7d. V35A vertical component dispersion Green’s Function.
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Figure 2.7e. V35A Vs-Depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.7f. V35A all stations H/V.
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Figure 2.7g. V35A site average H/V.
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Figure 2.8a. W35A site location. 
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Figure 2.8b. W35A station dispersion pathways and source positions.
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Figure 2.8c. W35A multi-component multimodal p-f dispersion images and picks.
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Figure 2.8d. W35A vertical component dispersion Green’s Function.
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Figure 2.8e. W35A Vs-depth, Vs30, and Nearfi eld H/V Model.
Page 96 of 143

G17AP00021 



W35A

Site Mean Max(H/V) = 2.0

0.1 1.0 10.0 100.0
Frequency (Hz)

0

2

4

6

8
H

/V
51002  (2.0)
51003  (2.0)
51004  (1.4)
51005  (1.5)
51006  (3.5)
51013  (2.0)
51014  (1.9)
51015  (1.5)
51016  (1.7)
51017  (1.7)
51018  (1.7)
51019  (2.8)
51020  (7.1)
51023  (1.9)
51025  (1.4)

Figure 2.8f. W35A all stations H/V.
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0.1 1.0 10.0 100.0
Frequency (Hz)

0

1

2

3

4
H

/V

One Sigma
Smooth Mean
Ln Mean

Figure 2.8g. W35A site average H/V.
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Figure 2.9a. W36A site location.
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Figure 2.9b. W36A station dispersion pathways and source positions.
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Figure 2.9c. W36A multi-component multimodal p-f dispersion images and picks.
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Figure 2.9d. W36A vertical component dispersion Green’s Function.
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Figure 2.9e. W36A Vs-depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.9f. W36A all stations H/V.
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Figure 2.9g. W36A site average H/V.
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Figure 2.10a. WMOK site location.
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Figure 2.10b. WMOK station dispersion pathways and source positions.
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Figure 2.10c. WMOK multi-component multimodal p-f dispersion images and picks.
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Figure 2.10d. WMOK vertical component dispersion Green’s Function.
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Figure 2.10e. WMOK Vs-depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.10f. WMOK all stations H/V.
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Figure 2.10g. WMOK site average H/V.
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Figure 2.11b. X34A station dispersion pathways and source positions.
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Figure 2.11c. X34A multi-component multimodal p-f dispersion images and picks.
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Figure 2.11d. X34A radial component dispersion Green’s Function.
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Figure 2.11e. X34A Vs-depth, Vs30, and Nearfi eld H/V Model.
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Figure 2.11f. X34A all stations H/V.
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X34A Average H/V From 15 Stations
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Figure 2.11g. X34A site average H/V.
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Figure 2.11h. X34A average H/V at the vault.
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Figure 3.1.  TUL1 observed horizontal displacement spectra.
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Figure 3.2.  OK001 observed and predicted horizontal displacement spectra.
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Figure 3.3.  OK002 observed and predicted horizontal displacement spectra.
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Figure 3.4.  OK005 observed and predicted horizontal displacement spectra.
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Figure 3.5.  OK009 observed and predicted horizontal displacement spectra.
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Figure 3.6.  T34A observed and predicted horizontal displacement spectra.
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Figure 3.7. U32A observed and predicted horizontal displacement spectra.
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Figure 3.8. U35A observed and predicted horizontal displacement spectra.
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Figure 3.9. V35A observed and predicted horizontal displacement spectra.
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Figure 3.10. W35A observed and predicted horizontal displacement spectra.
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Figure 3.11. W36A observed and predicted horizontal displacement spectra.
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Figure 3.12. W37B observed and predicted horizontal displacement spectra.

Page 132 of 143

G17AP00021 



Figure 3.13. W38A observed and predicted horizontal displacement spectra.
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Figure 3.14. X35A observed and predicted horizontal displacement spectra.
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Figure 3.15. X36A observed and predicted horizontal displacement spectra.
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Figure 3.16. X37A observed and predicted horizontal displacement spectra.
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Figure 3.17. X38A observed and predicted horizontal displacement spectra.
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Figure 3.18. Y35A observed and predicted horizontal displacement spectra.
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Figure 3.19. Y37A observed and predicted horizontal displacement spectra.
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Figure 3.20. WMOK observed and predicted horizontal displacement spectra.
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Figure 3.21. OK001, OK002, OK005, OK009, T34A, U32A, U35A and V35A normalized 
site response obtained by dividing by WMOK response spectrum.
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Figure 3.22. OK001, OK002, OK005, OK009, T34A, U32A, U35A and V35A normalized
site response obtained by dividing by WMOK response spectrum.
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Figure 3.23. OK001, OK002, OK005, OK009, T34A, U32A, U35A and V35A normalized 
site response obtained by dividing by WMOK response spectrum.
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